Publications
D. B. Tovilla-Coutiņo, C. Momany, M. A. Eiteman, "Engineered citrate synthase alters acetate accumulation in Escherichia coli," Metabolic Engineering, in press (2020). Article
X. Wu, D. B. Tovilla-Coutiņo, M. A. Eiteman, "Engineered citrate synthase improves citramalic acid generation in Escherichia coli," Biotechnology and Bioengineering, in press (2020). Article
H. Rajpurohit, M. A. Eiteman, "Pretreatment and detoxification of acid-treated wood hydrolysates for pyruvate production by an engineered consortium of Escherichia coli," Applied Biochemistry and Biotechnology, in press (2020). Article
J. Crigler, M. A. Eiteman, E. Altman, "Characterization of the Furfural and 5-Hydroxymethylfurfural (HMF) Metabolic Pathway in the Novel Isolate Pseudomonas putida ALS1267," Applied Biochemistry and Biotechnology, 190:918-930 (2019). Article
Q. Han, M. A. Eiteman, "Acetate formation during recombinant protein production in Escherichia coli K-12 with an elevated NAD(H) pool," Engineering in Life Sciences, 19:770-780 (2019). Article
A. Singh, S. R. Bedore, N. K. Sharma, S. A. Lee, M. A. Eiteman, E. L. Neidle, "Removal of aromatic inhibitors produced from lignocellulosic hydrolysates by Acinetobacter baylyi ADP1 with formation of ethanol by Kluyveromyces marxianus," Biotechnology for Biofuels, 12:91 (2019). Article
Q. Han, M. A. Eiteman, "Enhancement of NAD(H) pool for formation of oxidized biochemicals in Escherichia coli," Journal of Industrial Microbiology and Biotechnology 45:939-950 (2018). Article
M. Tumen-Velasquez, C. W. Johnson, A. Ahmed, G. Dominick, E. M. Fulk, P. Khanna, S. A. Lee, A. L. Schmidt, J. G. Linger, M. A. Eiteman, G. Beckham, E. L. Neidle, "Accelerating pathway evolution by increasing the gene dosage of chromosomal segments," Proceedings of the National Academy of Sciences USA 115(27):7105-7110 (2018). Article
J. Crigler, L. Bannerman-Akwei, A. E. Cole, M. A. Eiteman, E. Altman, "Glucose can be transported and utilized in Escherichia coli by an altered or overproduced N-acetylglucosamine phosphotransferase system (PTS)," Microbiology, 164:163-172 (2018). Article
N. Maleki, M. Safari, M. A. Eiteman, "Conversion of glucose-xylose mixtures to pyruvate using a consortium of metabolically engineered Escherichia coli," Engineering in Life Sciences, 18:40-47 (2018).Article
Q. Han, M. A. Eiteman, "Coupling xylitol dehydrogenase with NADH oxidase improves L-xylulose production in Escherichia coli culture," Enzyme and Microbial Technology, 106:106-113 (2017). Article
X. Wu, M. A. Eiteman, "Synthesis of citramalic acid from glycerol by metabolically engineered Escherichia coli," Journal of Industrial Microbiology and Biotechnology, in press (2017). Article
N. S. Parimi, I. A. Durie, X. Wu, A. M. M. Niyas, M. A. Eiteman, "Eliminating acetate formation improves citramalate production by metabolically engineering Escherichia coli, Microbial Cell Factories, 16:114 (2017). Article
T. Xia, N. Sriram, S. A. Lee, R. Altman, J. L. Urbauer, E. Altman, M. A. Eiteman, "Glucose consumption in carbohydrate mixtures by phosphotransferase system (PTS) mutants of Escherichia coli," Microbiology, 163:866-877 (2017). Article
T. Xia, M. A. Eiteman, "Quercetin glucoside production by engineered Escherichia coli," Applied Biochemistry and Biotechnology, 182(4):1358-1370 (2017). Article
A. M. M. Niyas, M. A. Eiteman, "Phosphatases and phosphate affect the formation of glucose from pentoses in Escherichia coli," Engineering in Life Sciences, 17:579-584 (2017). Article
N. Maleki, M. A. Eiteman, "Recent progress on the microbial production of pyruvic acid," Fermentation, 3:8 (2017). Article
E. Rajaraman, A. Agarwal, J. Crigler, R. Seipelt-Thiemann, E. Altman, M. A. Eiteman, "Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate," Applied Microbiology and Biotechnology, 100:7777-7785 (2016). Article
X. Wu, M. A. Eiteman, "Production of citramalate by metabolically engineered Escherichia coli," Biotechnology and Bioengineering, 113(12):2670-2675 (2016). Article
Y. Fang, H. Bullock, S. A. Lee, N. Sekar, M. A. Eiteman, W. B. Whitman, R. P. Ramasamy, "Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase," Biosensors and Bioelectronics, 85:603-610 (2016). Article
S. A. Lee, L. J. Wrona, A. B. Cahoon, J. Crigler, M. A. Eiteman, E. Altman, "Isolation and characterization of bacteria that use furans as the sole carbon source," Applied Biochemistry and Biotechnology, 178(1):76-90 (2016). Article
T. Xia, Q. Han, W. V. Costanzo, Y. Zhu, J. L. Urbauer, M. A. Eiteman, "Accumulation of D-Glucose from pentoses by metabolically engineered Escherichia coli," Applied and Environmental Microbiology, 81(10):3387-3394 (2015). Article
M. A. Eiteman, S. Ramalingam, "Microbial production of lactic acid," Biotechnology Letters, 37:955-972 (2015). Article
T. Xia, E. Altman, M. A. Eiteman, "Succinate production from xylose-glucose mixtures using a consortium of engineered Escherichia coli," Engineering in Life Sciences, 15(1):65-72 (2015). Article
X. Wu, R. Altman, M. A. Eiteman, E. Altman, "Escherichia coli adapted to elevated sodium concentrations leads to increased tolerance to cations and the ability to form lactic acid," Applied and Environmental Microbiology, 80(9):2880-2888 (2014). Article
S. D. Guetter, M. A. Eiteman, "Production of biomass and filamentous hemagglutinin by Bordetella bronchiseptica," Biosystems and Bioprocess Engineering, 37(2):115-123 (2014). Article
X. Wu, R. Altman, M. A. Eiteman, E. Altman, "Effect of overexpressing nhaA and nhaR on sodium tolerance and lactate production in Escherichia coli," Journal of Biological Engineering, 7:3 (2013). Article
A. S. Arya, S. A. Lee, M. A. Eiteman, "Differential sensitivities of the growth of Escherichia coli to acrylate under aerobic and anaerobic conditions and its effect on product formation," Biotechnology Letters, 35:1839-1843 (2013). Article
R. Prabhu, E. Altman, M. A. Eiteman, "Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady state conditions," Applied and Environmental Microbiology, 78(24):8564-8570 (2012). Article
T. Xia, M. A. Eiteman, E. Altman, "Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains," Microbial Cell Factories, 11, 77 (2012). Article
A. Lakshmanaswamy, E. Rajaraman, M. A. Eiteman, E. Altman, "Microbial removal of acetate selectively from sugar mixtures," Journal of Industrial Microbiology and Biotechnology, 38(9):1477-1484 (2011). Article
Y. Zhu, M. A. Eiteman, S. A. Lee, E. Altman, "Conversion of glycerol to pyruvate by Escherichia coli using acetate- and acetate/glucose-limited fed-batch processes," Journal of Industrial Microbiology and Biotechnology, (2010). Article
S. Lu, M. A. Eiteman, E. Altman, "Effect of flue gas components on succinate production and CO2 fixation by metabolically engineered Escherichia coli," World Journal of Microbiology and Biotechnology, (2009). Article
S. Lu, M. A. Eiteman, E. Altman, "Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations," Journal of Biotechnology, 143:213-223 (2009). Article
S. Lu, M. A. Eiteman, E. Altman, "pH and base counterion affect succinate production in dual-phase Escherichia coli fermentations," Journal of Industrial Microbiology and Biotechnology, 36:1101-1109 (2009). Article
A. Singer, M. A. Eiteman, E. Altman, "DNA plasmid production in different host strains of Escherichia coli," Journal of Industrial Microbiology and Biotechnology, 36:521-530 (2009). Article
M. A. Eiteman, S. A. Lee, R. Altman, E. Altman, "A substrate-selective co-fermentation strategy with
Escherichia coli produces lactate by simultaneously consuming xylose and glucose,"
Biotechnology and Bioengineering, 102(3):822-827 (2009). Article
Y. Zhu, M. A. Eiteman, R. Altman, E. Altman, "High glycolytic flux improves pyruvate production by a
metabolically engineered Escherichia coli strain," Applied and Environmental Microbiology, 74(21):6649-6655 (2008). Article
Y. Zhu, M. A. Eiteman, E. Altman, "Indirect monitoring of acetate exhaustion and cell recycle improve
lactate production by non-growing Escherichia coli," Biotechnology Letters, 30:1943-1946 (2008).
Article
M. A. Eiteman, S. A. Lee, E. Altman, "A co-fermentation strategy to consume sugar mixtures effectively," Journal of Biological Engineering, 2, 3 (2008).
Article
G. N. Vemuri, M. A. Eiteman, J. E. McEwen, L. Olsson, J. Nielsen, "Increasing NADH oxidation reduces overflow
metabolism in Saccharomyces cerevisiae," Proceedings of the National Academy of Sciences, 104(7), 2402-2407 (2007).
Article
Y. Zhu, M. A. Eiteman, K. DeWitt, E. Altman, "Homolactate fermentation by metabolically engineered Escherichia coli,"
Applied and Environmental Microbiology, 73(2), 456-464 (2007).
Article
M. A. Eiteman, E. Altman, "Overcoming acetate in Escherichia coli recombinant protein fermentations," Trends in Biotechnology, 24(11), 531-536 (2006).
Article
G. M. Smith, S. A. Lee, K. C. Reilly, M. A. Eiteman, E. Altman, "Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli,"
Biotechnology Letters, 28, 1695-1700 (2006).
Article
G. N. Vemuri, E. Altman, D. P. Sangurdekar, A. B. Khodursky, M. A. Eiteman, "Overflow metabolism in
Escherichia coli during steady-state growth: Transcriptional regulation and effect of the redox ratio,"
Applied and Environmental Microbiology, 72(5), 3653-3661 (2006).
Supplement 1
Supplement 2
Supplement 3
Article
G. N. Vemuri, M. A. Eiteman, E. Altman, "Increased recombinant protein production in Escherichia coli
strains with overexpressed water-forming NADH oxidase and a deleted arcA regulatory protein," Biotechnology
and Bioengineering, 94(3), 538-542 (2006).
Article
Seminars
"Programs at the University of Georgia and Possible Linkages," Presented at Anna University, August 5, 2014. List of Research Themes Powerpoint Slides